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Path integral quantisation and coherent states 

I Bakas and H La Rochet 
The Blackett Laboratory, Imperial College of Science and Technology, London SW7 2BZ, 
UK 

Received 1 August 1985, in final form 28 November 1985 

Abstract. Generalised coherent states are used in the quantum mechanical study of physical 
systems with homogeneous phase spaces, for which there is a group theoretical approach 
to quantisation. New sets of coherent states are introduced based on dynamical subalgebras 
and also with fiducial vectors in the rigged Hilbert space. We also examine the path 
integral expression for coherent state transition amplitudes from a group theoretical point 
of view. 

1. Introduction 

This paper considers the problem of constructing path integrals in situations where 
the phase space is not a vector space but a more general homogeneous symplectic 
manifold S. Our work follows on previous results of Klauder and collaborators who, 
in a series of interesting papers, have developed the theory of 'continuous representation 
path integrals' (Klauder and Daubechies 1985 and references therein). 

For homogeneous symplectic manifolds S of the form G/H, with G a Lie group 
and H a closed subgroup, Isham (1984) has emphasised that there is a natural way of 
quantising by exploiting the representation theory of a group % (related to G)  called 
hereafter the canonical group, assuming that it acts on S through symplectic 
diffeomorphisms with generators on G/H that are Hamiltonian vector fields (see, for 
instance, Kostant 1970, Guillemin and Stemberg 1984, Abraham and Marsden 1978). 

Briefly, the generators of G on S = G / H  are 

for (I/ E C"(S) and A E  L(G), the Lie algebra of G. Because the generators are Hamil- 
tonian, there are smooth functions {PA} defined up to a constant such that 

iY,w = d PA (2) 
with o the symplectic form on S. The functions {PA}, for a suitable choice of constants, 
realise L(G) or a central extension of it as a subalgebra of the Poisson algebra. The 
resulting Lie algebra can be exponentiated to define the canonical group $3 (which is 
different from G if a central extension term is present in the Poisson algebra of the PA). 

The next step involves the investigation of the unitary irreducible representations 
of 3, as in this group theoretical approach to quantisation they will provide a set of 

t On leave from the Center for Relativity, University of Texas, Austin, TX 78712, USA. 
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appropriate quantum theories associated with the classical phase space. One may 
consider the groups covering CB since these furnish representations of the Lie algebra 
as well. This is the analogue of the Heisenberg-Weyl group for qua>tisation on S = R2". 
Once a representation has been chosen on physi5al grounds, say U on X, from Stone's 
theorem we can define a self-adjoint operator A on some dense domain of X cone- 
sponding to PA, namely 

I d  
i d t  

A =- - c ( e x p  tA) (3 1 

The set of operators {A, A E L(%)} is a sufficient ohe on which to base quantisation in 
the sense that any other relevant operators can be written in terms of these (the 
fundamental quantum observables). 

These features can be illustrated by considering the class of theories with configur- 
ation space Q = S' (and hence S = T*S' = S' x R ) .  The appropriate canonical group 
is the two-dimensional Euclidean group E(2) = R 2  @ SO(2) (Isham 1984) with funda- 
mental observables S = sin 8, C = cos 8, J = p (in the natural 8, p coordinates) with 
Poisson algebra 

{C, S } = O  {J, S }  = -c { J ,  C}= s ( 4) 

defined with respect to the natural symplectic form on T*S'.  All the representations 
of E(2) can be 'induced' in the Mackey (1968) sense. They are labelled by a parameter 
A 2 0  and are realised on X= L2(S' ,  d0/257). Effects of non-trivial rl(S') come from 
representations of the covering groups of E(2) and reproduce the standard 6 effects 
(see, for instance, Schulman 1981, ch 23). For CF, in X we have 

(.&)(e) = -i(d/de)$(e) 

(g$ ) (e )  = A sin e+(e) 
( & ) ( e )  = A COS e+(e) 

( 5 )  

in terms of which other observables may be written. 
A further example is the phase space S 2  endowed with symplectic form w =  

sin 6 dB A d+  in the usual spherical coordinates (this has been previously studied in 
a geometric quantisation context (see Sniatycki 1980)). The natural group to consider 
is SO(3) which acts transitively on S2  and leaves o invariant. The functions 

Lz = sin 0 sin $ (6) 

represent the SU(2) Lie algebra under the Poisson bracket associated with o. From 
the representation theory of SU(2) we know that its unitary irreducible representations, 
fi(a), are realised on C2"+' where LY is positive integer or half-integer. The angular 
momentum generators correspond to the functions { Li }  in (6). This observation 
was made by Klauder (1979) where it is derived from a semiclassical approximation 
of a path integral. In this example, the group SU(2) is the canonical group associated 
with a phase space that is not T*Q of a configuration space Q. All representations 
fi(*) have a physical interpretation. 

It is important to emphasise that the path integral formalism for homogeneous 
symplectic manifolds is not as straightforward as the usual derivation (Schulman 
1981, ch 1) might lead one to believe. The reason is that these conventional derivations 
are intimately connected with the spectral resolutions of the generators of the Weyl- 
Heisenberg group and imply that the manifold in question admits the usual Fourier 
analysis. 

L ,  = sin 6 cos $ L, = COS e 
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In the next section we discuss the group theoretic coherent states that we shall use 
in our path integral investigations. They have been introduced by Klauder (1963) and 
subsequently studied by Perelomov (1972). They were used in the work of Yaffe (1982) 
in discussing the classical limits of quantum theories as well as in Lieb (1973), Fuller 
and Lenard (1979a, b)  and Simon (1980) who discuss the classical limits of quantum 
spin partition functions. Here, we generalise their notion by allowing the fiducial cyclic 
vector that generates them to belong to a rigged Hilbert space. We also apply the 
standard definition to dynamical subalgebras. 

In 0 3 we discuss path integrals that are obtained with the use of these states showing 
how some of the structures introduced by Klauder (1978, 1979) follow as geometrical 
objects on a coset space of the canonical group. 

2. Group theoretic coherent states 

2.1. Construction 

The considerations of this section are valid for any irreducible unitary representation 
of a locally compact group acting on a Hilbert space X, but they are specifically applied 
to representations of the canonical group ( 3 ) .  y e  proceed by choosing a fiducial 
vector I z o ) ~  X. We note that the set spanned by { U(a)lz,), a E Ce} is dense in E (if it 
were not, it would span an invariant subspace of it) so the vector Iz,) is cyclic for the 
representation. The stability group Ceo of the state Izo) is defined to be the subgroup 
of Ce such that a E Ceo implies 

with P ( a )  real. Certainly, Ceo contains the centre of 3 as a subgroup. 
It is clear that in order to obtain a dense set of vectors it suffices to select one 

representative from each equivalence class in %/go. The group Ce is a principal Ceo 
bundle over X = %/ 9l0. This bundle may not be trivial and in that case possesses no 
continuous global cross sections. However, we may use measurable cross sections with 
the property of being smooth in some open set U in X .  The measure p on X will be 
required to be %-left invariantt and such that p (  U)  = p(X). If g : X + Ce denotes our 
cross section then we define a system of coherent states by 

@ x : = { l z ) =  iT[g(z)]lz,); ZEX}. (8) 
The space X appears as a parameter set for a dense set of states in X. The subgroup 
Ceo is crucially dependent on the choice of cyclic vector Izo) and may not always be of 
fixed dimensionality. When %/go is locally diffeomorphic to the phase space S for 
which Ce is the canonical group, the states in ax are called phase space coherent states. 

We say the representation fi is square integrable with respect to the cyclic vector 
Izo) and the measure CL if 

fi(a)lzo) = exp(iP(a)lzo) (7) 

:= I, dCL(Z) I (Z01~ [g (Z )11Z0)12<~ .  (9) 

The definition is clearly independent of the local section g .  For square integrable 
representations, the resolution of unity 

t An example of a left %-invariant measure p is the volume form associated to a left invariant metric on X. 
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follows from the observation that the right-hand side commutes with all f i ( a ) ,  SO by 
Schur’s lemma it is a multiple of the unit operator. The normalisation M is given by 
the integral in (9). 

The condition of square integrability has been studied (when %o is the centre of 
9) for unimodular nilpotent groups (Moore and Wolf 1973) and real semisimple 
groups (Harish-Chandra 1956). For non-unimodular groups, partial results exist as 
well (Tatsuuma 1972). Square integrability is clearly guaranteed for compact groups. 

An interesting variation of the coherent state theme is to let Izo) belong to the 
component 0’ of a rigged Hilbert space, CP c Xc CP’T. This allows the construction of 
coherent states based on distributions as fiducial vectors. A completeness relation like 
(10) may then follow as a consequence of a spectral theorem (rather than Schur’s 
lemma), provided they are eigenstates of an operator with continuous spectrum. 

Coherent states need not transform equivariantly with the group action but rather 
they pick a phase factor (Perelomov 1972), i.e. 

ir(a)lz) = exp(iy,(a)/az). (11) 

? , (ab )  = Y b z ( a ) +  Yz(b)  (12) 

The y , ( a )  have the 1-cocycle property 

but it is often not a genuine element of Z ’ ( G ,  C ( X ) )  since it is defined with respect 
to the non-continuous (but measurable) cross section g. 

2.2. Evolution of coherent states 

For a physical system with canonical group % and C ( a )  an appropriate unitary 
irreducible representation, we construct the system ax of coherent states based on a 
cyclic vector Ip). If the Hamiltonian of the system is 3, the vector Iz) in ax, then 
lz), := exp(-itti/ h)lz) will not generally be in ax. We say the evolution is exact when 
I z ) , E @ ~  for all t (modulo phases). This is the case, for instance, if 3 is a linear 
combination of the generators of Ce in the representation that we consider. For exact 
systems, the quantum evolution may be equivalently described with a trajectory in the 
parameter space X = %/ go. %-dynamical or Schrodinger subalgebras provide a natural 
ground for applying the coherent state idea. These subalgebras are defined as follows: 
let L( %D) be a Poisson bracket algebra of functions on S such that (i)  L( %$,) contains 
L( 3) as a subalgebra and the classical Hamiltonian among its generators, and (ii) it 
can be represented by self-adjoint operators on 2 (where L( 9) acts irreducibly). These 
algebras are by definition free from the Van Hove type mathematical obstructions to 
quantisationS (see Chemoff (1981) for a review and Bakas and Kakas (1985) for a 
discussion in a canonical group context). It is advantageous to introduce coherent 
states based on L( 3) -dynamical subalgebras as exactness is assured by construction. 

For the Weyl-Heisenberg group W, we can, for example, introduce the harmonic 
oscillator dynamical subalgebra L(W @ R) (Streater 1967) which has the following 

t @ is a linear dense subset of X and X i s  densely contained in a‘, the dual of a. Usually, @ is constructed 
to be a nuclear space as then unbounded self-adjoint operators can be diagonalised in a’ (Gelfand and 
Vilenkin 1964). For instance @:= {JE X :  9 3 a + U ( a ) f  is infinitely differentiable} is a nuclear space (Nagel 
1970) when 9 is nilpotent, semisimple with finite Centre or of the form A @ K with A Abelian and K compact. 
$ For the linear case Q = R, the maximal finite-dimensional Schrodinger subalgebra is spanned by 

P9 d 4P> P2. s2}.  
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quantum commutation relations (io = $($'+ ?)I: 

Introducing coherent states based on this group with lzo) chosen to be the vacuum 
state of Ho one recovers conventional Weyl-Heisenberg coherent states (otherwise 
known as Glauber states, see Klauder and Sudarshan (1968) for a review). 

[<,$]=ih [i, go] = ih$ [$, io] = -ihi. (13) 

2.3. Examples 

In the following examples, coherent states for several groups of physical interest are 
constructed and their quantum dynamics is investigated ( h  = 1 in this section). 

2.3.1. Weyl-Heisenberg group. This is the canonical group for systems with Q = R. 
The only infinite-dimensional unitary irreducible representation is realised on L2( R, dx) 
with 

i r ( q , p ,  a) :=exp(- ia i )  exp[i(pij-qp*)l (14) 

19, P) = exp[i(pq* - qp*)11zo) 

with $ represented by multiplication by x and $ by -i(d/dx). 
One can define a set of coherent states by 

(15) 

for any I z ~ ) E  L2(R,  dx),  where (q,  p )  are to be interpreted as labels on W/Z where Z 
is the centre of the group W (generated by 1 ) .  However, for a general fiducial vector 
Izo) the above set has an exact evolution only for systems whose Hamiltonian is a 
linear combination of $, q* and 1 .  When lzo) is allowed to be the zero position eigenstate 
1q = 0) then the q generator factors away as well and we obtain definite position states 
as rigged coherent states: 14) = exp(-iqp*)lq = 0). Similarly, the choice Ip = 0) yields 
definite momentum states, Ip) = exp(ipq^)lp = 0). The spectral theorem for the 4 and p  ̂
operators provides resolutions of unity in terms of these states. For the harmonic 
oscillator group W 0 R, we consider the representation 

@(% P, a, Y) = C(S, P, a )  exP(-iYfio). (16) 
In this parametrisation, the group law is 

(%,PI ,  Q 1 ,  Y l ) ( q 2 , P 2 ,  a 2 9  72 )  

= (41 + q 2  cos Y1 +p,sin Y1, PI + P 2  cos 71 - q 2  sin 71, a1 + a2 

+ t [ ( q 1 p 2 - p 1 q 2 )  cos sin r,], y l +  y 2 ) .  (17) 
Coherent states can be dPfined by letting 6' act on a fiducial vector and factoring out 
the phase subgroup. If Ho in (16) were the free particle Hamiltonian (also a dynamical 
algebra of the form L(W 0 R)) then the group law would be 

( % , P I ,  a 1 3  YI)(q2,P2r a 2 7  Y2)  

= (41 + 9 2 + P ~ Y 1 ,  PI +PI 9 ai + a2 + t[qiP* -PI q2-pi P ~ Y I I ,  71 + 7 2 ) .  (1 8) 
From the group law (17) (resp (18)), the quantum evolution of the harmonic oscillator 
(resp free particle) can be equivalently described by a curve in the parameter space 
of coherent states defined by the representation W: 

q ( t ) = q c o s t + p s i n t  p ( t )  = p  cos r - q sin t (17') 
d t )  = 4 + P t  P ( t ) = P  (18') 

respectively, which are identified as the classical time evolutions. 
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Suppose we choose (zo) to be an eigenstate of the harmonic oscillator Hamiltonian; 
when (16) acts on Izo) the y term will factor away yielding coherent states that are the 
same as those in (15 ) .  When Izo) is the harmonic oscillator vacuum state, we get 
Glauber states. 

2.3.2. S U ( 2 )  states. As we have pointed out, SU(2) is the canonical group for non- 
relativistic spin: we review the construction of Perelomov (1972) of coherent states for 
this group. 

We choose to use the Euler angle parametrisation of SU(2), namely 

LYU'(4, e, p )  = exp(i4i:"') exp(i0i:"') exp(ipi:"') 

14, e),,,:= exp(i4i:"') exp(id:"')(a, - a )  

(19) 

for spi? a. Choosing lzo) = la, - a )  the stability group consists of elements of the form 
exp(ipL,), and hence the set of coherent states is 

(20) 

parametrised by points on S2  and the resolution of the identity is 

2.3.3. E ( 2 )  group. The unitary irreducible representations of E(2) act on L2(S',  de),  
but they are not square integrable so it is not possible to use the Perekomov techniqu:. 
Rigged coherent states are still possible by choosinglzo) to be a C (and hence S )  
eigenstate. Then 'definite angle' states 16') = exp(-ie'J)(z,) result after factoring out 
the s!bgroup generated by C and S. They are rigged? coherent states (eigenstates of 
the C and S operators). The spectral theorem for C (or S) yields a resolution of unity 

2.3.4. Afine group, R @ R, .  This is the canonical group for Q = R, (Isham 1984) with 
commutation relations 

[G, 7;] =id. (23) 
Because R ,  has three orbits in R there are three different unitary irreducible representa- 
tions (see for instance Mackey 1968). The interesting physical ones are realised on 
L Z ( R + ,  dx/x)  and L 2 ( R - ,  dxlx) .  The one based on wavefunctions with support on 
the positive real line has generators 

(&')(XI = X W )  (&+)(x) = -ix(d/dx)+(x). (24) 

Aslaksen and Klauder (1969) have introduce affine coherent states based on the fiducial 
vector zo(x) = 2x exp(-x2), 

Iv, A)=exp(-iv<) exp[-i(ln A)6]lzo). ( 2 5 )  

fi,, =$&(l/ i )&+&Ii  with A >  0 (26) 

We next consider a R@ R+ dynamical subalgebra that contains q and T and the 
Hamiltonian given by 

t The Gelfand triplet being c L 2 ( S ' )  c 9', 9 = differentiable vectors of the representation. 
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with commutation relations 

[q*, 61 = iq* [q*, A,] = i$ [T, A,] = $A,, - h i ] .  (27) 

S(v,  A, c )  =exp(-ivq*) exp[-i(ln A ) $ ]  exp(-icfio) 

If we parametrise the unitary representation associated with (27) by 

(28) 

with Ho = H(,=,, then the group law takes the form 

(Vl, A l ,  C I ) ( V Z ,  A 2 9  c2) 

Coherent states based on thisAdynamical subalgebra have an exact evolution for a 
system whose Hamiltonian is H,, . The quantum trajectory in (U, A, c) space is given by 

A (  t )  = A cos2( T)[  tA 1 -z U tan( T)] tJ;i; 

u ( t )  = a t a n ( ? )  + v{cos’(?)[ 1 -%tan(?)]}-’ 

c( t )  = c +- A > t a n ( T ) [  1 -%tan(+)]-’ 

(31) 

where A = A ( O ) ,  U =  v(O), c =  c(0). We note that the quantum evolution in this case 
can be equivalently described by a curve in the (v,  A, c) parameter space. However, 
the dynamical group considered here is not a semidirect product extension of the 
canonical group R 0 R+ (cf (17) and (18)) and hence the c( t )  component of the above 
time evolution is not trivial. This feature is a peculiarity of the affine group which 
becomes transparent when coherent states based on dynamical algebras are considered. 

3. Path integral quantisation 

If meaningful resolutions of unity exist for the system of coherent states ax and 
moreover the states are overcomplete in the sense that any two of them are never 
orthogonal (except in a set of p-measure zero), then one can construct continuous 
representation path integrals following Klauder (1978,1979). The transition amplitude 
(z”, t”lz’, t ’ )  to go from state lz’) at t’ to 1z”) at t” is 

A skeletonisation of the time interval ( t ’ ,  t” )  has been Derformed where E = 
( t ” -  t ’ ) / (  N + 1). In the small E limit, or equivalent large N limit, we write 

(34) 
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Thus (33) can be written 

We shall obtain an expression for the transition amplitude (36) in a way that reflects 
the natural % action on X = %/ %,, , By the transitivity of the % action there is a group 
element aj (modulo the isotropy group of z,) that translates zj into z ,+~,  i.e. 

Zj+l  - - la,(aj) = ajzj. (37)  

Because the canonical group is constructed as the exponential of the Poisson Lie 
algebra of the PA, we can associate to aj a Lie algebra element Aj such that 

aj = exp Aj (38) 

a(Aj)z$ =- $[(exp tAjz)I\t=o 

and to which we can associate a fundamental vector field C ~ ( A ~ ) ~  by 

(39) 
d 
d t  

for any function $ on X .  In particular 

(exp- a ( ~ , ) ) , ~ + , $  = $(a;’z,+J = Kz,).  (41) 
The vector field a(A,) can be thought of as the ‘difference’ between two points z,+~ 
and z, in a manifold with a general transitive group action rather than an affine structure. 

We define 15) : X -+ 2 by 

lt(z)):= lz) (42) 
and introduce, as is usual in path integral discussions, the midpoint 5 between z, and 
z,+~ defined through the properties 

(exp f 4 A , ) ) f , $  = $(z,+J (exp-fa(A,)),,$ = +(z,). (43) 
In the appendix we show how ln(z,lz,+J can be expanded to second order in a(A,) 
to give 

When (44) above is substituted in (36), a suitable time-sliced version of the path 
integral is obtained, provided it is sufficient to keep the expansion only to second order 
in a(Aj). 

It is convenient to introduce a 1-form and a metric: 

ez = -ih(z(d(z) (45a) 

- ( l /h2)p ,  = [(zldlz)O, (zldlz)+(d(zl) Os (+))I (456) 

using d, the exterior differential operator on U c X and a,, the symmetric tensor 
product. With these structures, (44) may be written 
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The 1-form BZ is not %-invariant. However, using ( 1  1 )  we see that 

so that dB is in fact %-invariant, thus suggesting a possible identification of 8 as a 
presymplectic form ( w  = de)  for X .  Again we make the proviso that because the cross 
section g which defines the states l z )  is not necessarily continuous except in a domain 
U c X ,  then 6 is not always globally defined. Further, X is not guaranteed to be of 
even dimensionality (thus not admitting a symplectic form). Using ( 1  l ) ,  the metric p 
may be verified to be %-invariant within the open set U and it is therefore possible 
to extend p to a global object on all of X. Further, one can show p to be positive 
definite. In particular, if we choose g( z) = exp( zQta) with { r Q }  a basis of L( % ) / L (  go), 
then p at the origin of X (the coset go) is 

Pq, = h (% ZoI ( fa fb -k fb ;Q 1 20) - (z0I fa I zo)( ZoI ;b I Zo)) d z (I 0, d z (48) 

which is clearly positive definite. 
We can now write a formal expression for the path integral (36 ) .  Denote by 

Zj = a ( A j ) /  E the average velocity vector between steps; then the continuum version 
of (40) may be expressed as 

where we have left a 'small' E factor in front of the metric. 
A rigorous approach to (49) can be formulated by interpreting the metric factor in 

it together with the %-invariant measures ll dp(z l )  as defining a Wiener measure for 
Brownian motion on X with diffusion constant h / ~ .  The actual amplitude could be 
recovered by taking the limit E + 0 (Klauder and Daubechies 1984, 1985). 

The path integral for Glauber coherent states assumes the form ( h  = l ) ,  

= {  r ' < r < r "  n d p " e x p [ i { : ' d t ( ( p q - p q ) + : ( p 2 + q 2 ) - H ( p , q ) ) ]  217 (50) 

whereas the path integral for spin (Klauder 1979, Kuratsuji and Suzuki 1980), now 
shown to follow from group theoretic quantisation on S2, is 

(e", 4'1, ,''/e', 41, t ' )  

The form a cos 6 d#  appearing in the exponent (51 )  is not globally defined, a not 
unsurprising fact since S 2  does not admit a presymplectic form because it is compact 
(it is also not the cotangent bundle of some configuration space). This lack of global 
definition can be traced back to the definition (20); as is well known, the fibre bundle 
U(1) + SU(2) + S2 = SU(2)/U(1) is not trivial so the comments after (47) are applicable. 
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4. Discussion 

We have shown how when the square integrability requirement is satisfied, coherent 
state path integrals can be constructed for phase spaces that are not linear but carry 
instead a transitive group action (homogeneous space). These path integrals incorpor- 
ate the effects of the group theoretic approach to quantisation of the kinematical 
variables. 

The matrix element H(z,) =(z, t lf i lz,  t )  (cf (35)) can be evaluated by virtue of the 
formula 

eYX e - ' = X + [ y  X I + ; [  Y, [ Y, X I ] + .  . . . ( 5 2 )  

For exact systems, H(z,)  = (zo~fir~zo) ,  where fir is a linear combination of the generators 
of the group that is associated with the coherent states ax. In general, Klauder (1967) 
conjectures that lim,,+o H( z,) = H,,,, , the classical Hamiltonian of the system in 
question. 

Lastly, we comment on the validity of expansion (44). If the rigorous approach 
to (49) is valid, i.e. if it is indeed a Wiener path integral, then no terms of higher than 
quadratic order in u ( A j )  will contribute because these are invisible to the (Wiener) 
measure. 
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Appendix 

Our objective is to find an expression for ln(z,+l/z,). Using (43), we see that it can be 
written as 

1nC (exp tu(AJ)zJ(tl)I[(exp - t d A , ) ~ , l ~ ) ) I } .  (Al l  

The exponentials above can be expanded to second order in u(A,) to obtain 

In{ [ 1 + t (  4 A, ) 2, (5 I) 12,) + f ( U (A, 1 i, (A, ) ( 5  I )I? )I 
x -4( i ' , l (~(A,)z ,15))+f~~l(~(A,) ,~(A,)15))+.  . .I). (fQ) 

Using the fact that (515) = 1, it follows that for any vector field Y,  

we can then rewrite (A3) and expand the logarithm to obtain precisely (44). 
Equation (46) follows from the differential geometry identity 

X Z $ J  = d$J(X). (-44) 
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